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SUMMARY

This paper presents a simple and practical scheme for capturing moving interfaces or free boundaries
in multi-�uid simulations. The scheme, which is called THINC (tangent of hyperbola for interface
capturing), makes use of the hyperbolic tangent function to compute the numerical �ux for the �uid
fraction function, and gives a conservative, oscillation-less and smearing-less solution to the �uid fraction
function even for the extremely distorted interfaces of arbitrary complexity. The numerical results from
the THINC scheme possess adequate quality for practical applications, which make the extra geometric
reconstruction, such as those in most of the volume of �uid (VOF) methods unnecessary. Thus the
scheme is quite simple. The numerical tests show that the THINC scheme has competitive accuracy
compared to most exiting methods. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: computational �uid dynamics; moving interface; interface capturing; advection scheme;
multi-phase �ow

1. INTRODUCTION

Computation of moving interface or free boundary is of great importance in the direct simula-
tions of multi-phase �uid dynamics, where the interface separating di�erent �uids and moving
with the �ow �eld needs to be explicitly computed. In contrast to the so-called front tracking
methods where Lagrangian particles are used [1, 2], the front capturing methods, such as the
volume of �uid (VOF) and the level set methods use time and space-dependent indication
functions to identify the interfaces.
VOF has been used to name a wide spectrum of methods that employ an indication function

to de�ne the volume fraction of a certain �uid for each mesh volume. The VOF-type meth-
ods have so far got a popularity in multi-phase �uid simulations because of their conservative
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nature. The key in a VOF scheme is how to compute the numerical �uxes to update the func-
tion of �uid fraction. In the original VOF method of Hirt and Nichols [3], a donor–acceptor
formulation is used with some �ux-limiting manipulations to assure the boundedness of the
numerical solution. Other successive researches along this direction are found in References
[4, 5]. These methods do not require explicitly the geometrical reconstructions in the solution
procedure, thus are referred to as algebraic-type methods. Another category of the VOF meth-
ods, the so-called geometrical type, make them di�erent from the algebraic ones by adding
an extra step after the advection to explicitly identify the geometry of the moving interface.
Principally, a conventional geometrical VOF algorithm consists of two steps, i.e. (1) carrying
forward the interface according to �uid velocity (advection) and (2) identifying the interface
at new position (geometrical reconstruction). The early geometrical VOF scheme is known
as SLIC (simple line interface calculation) [6] where the reconstruction is conducted by a
straight line parallel to coordinate axis. More sophisticated methods, known as PLIC (piece-
wise linear interface calculation), have been proposed to use a linear approximation with the
orientation of the interface considered [7–11]. A PLIC scheme is proved to be more accurate
than a SLIC one, but a signi�cant increase in the algorithmic complexity at the geometrical
reconstruction step seems to be unavoidable.
Considering that the VOF function is nothing more than a step-like function that moves

with the local �ow velocity, it is quite natural for one to think of using a high-resolution
advection scheme to compute the VOF function. Some e�orts have been made in this di-
rection [12–14]. In these schemes, numerical di�usions and oscillations across the interface
jump are e�ectively suppressed and no geometrical reconstruction is involved. Without the
geometrical reconstruction, these methods may also be more appropriately called ‘algebraic
VOF’ or algebraic interface capturing methods. Numerical results show that the algebraic in-
terface capturing methods using high resolution advection schemes are more accurate than
the SLIC method and the original VOF method, but inferior to most of the PLIC methods
in the presence of complex �ow �elds. Nevertheless, because an algebraic interface capturing
method is much simpler and more computationally e�cient than a PLIC VOF scheme, new
schemes of this category should be worthy of further investigation.
The desired numerical solution of the VOF function (or more properly, the density function

in the context of an algebraic interface capturing scheme) should at least be conservative,
free from spurious oscillation and numerically di�usion less. It is obvious that the advection
scheme used to transport the �uid fraction function or VOF function substantially a�ects
the numerical solution of the interface. With a well-designed �ux limiter or slope limiter,
a conservative Eulerian high-resolution scheme is able to e�ectively prevent the numerical
oscillation. However, any scheme of this type does smear the initial jump in the density
function due to the inherent numerical di�usions. Most of the algebraic methods are devised
by incorporating an arti�cial compression or anti-di�usion manipulation to the high-resolution
schemes [12–15].
On the other hand, researches that make use of special analytical functions to improve the

numerical solutions of di�erence equations are also found in the literature. The exponential
function is the mostly used one in solving advection–di�usion equation since the solution to
the 1D advection–di�usion equation is in the form of the exponential function. In regions
where the solution has an exponential distribution, the �nite di�erence approximation which
is equivalent to the polynomial �tting cannot give su�cient accuracy. Fitting the solution with
an exponential and deriving the discretized equation by the constraint conditions imposed at
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grid nodes appear to be e�ective in getting more accurate solutions to the problems involving
advection–di�usion equation. The applications of the so-called exponentially �tted method are
found in the boundary layer problems of viscous �uid [16, 17] and the transport problem in
silicon device [18]. A recent review with the new progress of the exponentially �tted method
is reported in Reference [19]. In the interface capturing computations, a VOF function has
step-like distributions across the moving interface, which tends to cause signi�cant numerical
errors if conventional �nite di�erence or �nite volume methods, as the most Eulerian schemes
mentioned above, are used. So, �tting the step-like solution with some particular functions may
be used as well to improve the numerical representation of the VOF function. In our previous
work [20], a tangent transformation is incorporated to a high-order advection scheme [21]
to improve the step jump in the density function. The resulting scheme, however, is not
numerically conservative.
In this paper, we develop a new interface capturing scheme, namely THINC (tangent of

hyperbola for interface capturing), by using the hyperbolic tangent function. The step-like
nature of the hyperbolic tangent function makes it a suitable interpolant for the �ux compu-
tation of a VOF function, and is e�ective in eliminating numerical di�usion and oscillation.
The hyperbolic tangent interpolation function is constructed based only on the value of �uid
fraction which is between 0 and 1. The jump and slope of the hyperbolic tangent func-
tion, which play a key role in getting a geometrically faithful solution, are automatically
determined in the THINC scheme depending on the local solution. Our numerical experi-
ments show that the THINC scheme possesses adequate accuracy in both pure advection and
�uid application, and has a more robust performance in keeping the compact thickness of
largely distorted interface compared to other methods using high-resolution schemes [12–15].
Without geometrical reconstruction, the THINC scheme is quite simple and computationally
e�cient.
In Section 2, the algebraic interface capturing scheme THINC is presented. The numerical

experiments of pure advection of the moving interface are given in Section 3 with comparisons
to other existing numerical methods. Some validations and applications of the THINC scheme
to multi-�uid simulations are presented in Section 4, and the paper ends with a short summary
in Section 5.

2. THE THINC SCHEME

The VOF function evolves according to the following advection equation:

@f
@t
+∇ · (uf)− f∇ · u=0 (1)

where u is the velocity �eld. The VOF function f has a value between 0 and 1.
We want our advection scheme to meet at least the three requirements: (1) exactly con-

serves the advected quantity, (2) e�ectively eliminates the numerical smearing (di�usion)
and (3) does not produce spurious oscillation around the step-jump of the VOF function.
The straightforward way to achieve these properties is to employ a formulation of �ux form
and use arti�cial compression or anti-di�usion which may be inherently built in the scheme
through the interpolation reconstruction for �ux computation [13, 14] or by extra treatments
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Figure 1. The one-dimensional VOF function. The interface is identi�ed by the step-jump falling in a
cell where the VOF function �fi−1 has a value between 0 and 1. x̃i−1 indicates the position of the jump.
The hyperbolic tangent function is used to compute the numerical �uxes. The shaded area indicates the

numerical di�usion and is determined by parameter �.

separating from the advection [15, 12]. However, for a step-like function with values between
0 and 1, the construction of the advection scheme can be signi�cantly simpli�ed by use of
some special interpolation functions. The THINC scheme presented below makes use of the
hyperbolic tangent function to evaluate the numerical �ux.
The basic 1D THINC scheme is devised for the advection equation of the VOF

function

@f
@t
+
@
@x
(uf)− f @u

@x
=0 (2)

where t refers to the time, x the spatial coordinate, u the advection speed and f the transported
quantity.
The VOF function has its solution bounded by 0 and 1. A moving interface in one dimen-

sion is represented by a jump in the VOF function as shown in Figure 1. The Lagrangian
invariant solution of (2) states that a jump in the initial condition remains unchanged along
the trajectory. However, it is known that any straightforward use of �nite di�erence method
or �nite volume method will produce signi�cant numerical errors, such as the numerical dif-
fusion or the spurious oscillation because of the poor accuracy of a polynomial-based �tting
to a discontinuous jump. Analogous to the exponential �tted method used for the advection–
di�usion equation, we use the hyperbolic tangent function to �t the jump in the VOF function
and to get less di�used and more accurate numerical solutions.
Let �fni denote the cell-averaged value of the numerical solution to (2), which is de�ned

over [xi−(1=2); xi+(1=2)] at the nth time step (t= tn) by

�fni =
1
�xi

∫ xi+(1=2)

xi−(1=2)

f(x; tn) dx (3)

where �xi= xi+(1=2) − xi−(1=2).
It is obvious that the hyperbolic tangent is the simplest continuous function that well �ts a

step-jump distribution. We use the piecewise modi�ed hyperbolic tangent function as

Fi(x)=
�
2

(
1 + � tanh

(
�
(
x − xi−(1=2)
�xi

− x̃i
)))

(4)
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The parameters �; � and � are of substantial importance in determining the quality of the
numerical solution, and will be discussed later.
Given �; � and �, the only unknown left in (4) is the middle point of the transition jump

in the hyperbolic tangent function x̃i, which is computed from the cell-integrated average �fni
as follows:

1
�xi

∫ xi+(1=2)

xi−(1=2)

Fi(x) dx= �fni (5)

After the piecewise interpolation functions Fi(x) have been computed for all mesh cells,
the VOF function f is updated by the formulation of �ux form as

�fn+1i = �fni − (gi+(1=2) − gi−(1=2))=�xi + �fni (ui+(1=2) − ui−(1=2))=�xi (6)

where gi+(1=2) denotes the �ux across boundary x= xi+(1=2) during tn+1− tn and is computed as

gi+(1=2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
∫ tn+1

tn
Fi(xi+(1=2) − ui+(1=2)(t − tn)) dt if ui+(1=2)¿0

∫ tn+1

tn
Fi+1(xi+(1=2) − ui+(1=2)(t − tn)) dt otherwise

(7)

The way to determine parameters �; � and � is as follows.
Parameter � depends on the slope orientation of the jump, and is determined as

�=

{
1 if �fni+1¿ �fni−1

−1 otherwise
(8)

It easy to show that (8) guarantees the reconstruction (4) to have a monotonicity consistent
with the spatial distribution of the VOF function.
In order to have the interpolation function Fi(x) bounded between �fni−1 and �fni+1, parameter

� is determined as

�=

⎧⎨
⎩
�fni+1 if �fni+1¿ �fni−1

�fni−1 otherwise
(9)

From (9), it is also obvious that the jump in the interpolation function for cell i is determined
according to the larger value of the VOF function in the neighboring cells. Hence, an inherent
anti-di�usion e�ect is included.
Parameter � determines the steepness of the jump in the interpolation function. To show

how � a�ects the numerical di�usion, we consider the case of a single jump located in cell
i − 1 shown in Figure 1. Without losing generality, we assume a constant advection velocity
(u¿0) and �fni+1 = �fni ¿ �fni−1. For the case of u�t¡xi−(1=2) − x̃i−1, the numerical �uxes at the
two ends of cell i should be identical and equal to

gi−(1=2) = gi+(1=2) = �fni × (u�t) (10)

if the jump is perfect and without any smearing. Thus, �fn+1i does not su�er any numerical
dissipation and should remain exactly the same as �fni according to (6). Consequently, the
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Figure 2. The relation between the numerical dissipation and parameter �. As � increases, the jump in
the hyperbolic tangent function becomes steeper and the numerical di�usion is reduced.

numerical di�usion to �fn+1i because of using the reconstruction (4) can be measured by

Di�error ≡
| �fni × (u�t)− ∫ xi−(1=2)

xi−(1=2)−u�t Fi−1(x) dx|
| �fni | (11)

Figure 2 shows the dependency of the numerical di�usion on parameter �. It is obvious
that a larger � leads to a steeper jump in the interpolation reconstruction and thus a less
numerical dissipation. However, our numerical experiments show that a large � gives a steep
interface jump but tends to wrinkle an interface which is parallel to the velocity direction,
thus makes the scheme more similar to a ‘downwind’ donor–acceptor scheme. It is also
found that the THINC scheme is able to provide a steep but less wrinkled interface with a
proper choice of �. We used an ad hoc value of �=3:5 in the all numerical runs in this
paper.
As observed above, the THINC algorithm, with the numerical �uxes evaluated algebraically,

is extremely simple. From the hyperbolic tangent function (4), we know that the interpolation
function used in the THINC scheme is free from oscillation. The numerical di�usion, which
usually stems from the interpolation reconstruction in an Eulerian high-resolution scheme, can
be e�ectively eliminated by properly choosing � and �.
The THINC method has some features similar to the existing schemes which are based

partly on the donor–acceptor formulation, such as the original VOF [3] and the SURFER [4]
methods. In the latter, the numerical �uxes are computed by a piecewise constant approxi-
mation of the �uid fraction function. The integrated average value for each cell is calculated
by either the smearing ‘upwind’ scheme or the steepening ‘downwind’ scheme. As discussed
in Reference [4], a ‘downwind’ scheme can e�ectively keep the interface jump from being
smeared, but tends to wrinkle the moving boundary that is nearly parallel to the �ow di-
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rection. A remedy to this can be a switching between a ‘upwind’ scheme and a ‘downwind’
scheme according to how the interface is perpendicular to the �ow. The step-like feature of the
hyperbolic tangent function leads to a somewhat piecewisely constant approximation. However,
the THINC scheme proposed in this paper is substantially di�erent from the existing schemes
in the following aspects: (1) using the hyperbolic tangent, the THINC scheme automatically
preserves the boundedness of the VOF function, thus does not need any extra manipulation
required in the donor–acceptor formulation to eliminate the over-�ow and under-�ow in the
numerical solution, (2) as shown later, the THINC method gives adequate numerical results
even when there is no upwind–downwind switching involved, (3) shown in the numerical
tests given next, the THINC scheme does not produce �otsams that always associate with
other donor–acceptor formulations.
A 1D advection of a square pulse is computed. The numerical result after 5000 steps of

updating with a CFL number of 0.25 is plotted in Figure 3. The step-like jump in the solution
is 30 constantly preserved and well resolved.
In the current THINC scheme, multi-dimensional computation is conducted by operator

splitting. The one-dimensional building block discussed above is separately used in each
coordinate direction. This makes the THINC scheme straightforward and simple in multi-
dimensional implementation. Being of an algebraic type, the THINC method does not involve
any geometrical reconstruction in multi-dimensional computation, but appears to be able to
give adequately accurate numerical results as shown next.

 0
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 1.2
THINC

EXACT

Figure 3. A 1D transport of a square wave after 5000 steps.
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3. ADVECTION TESTS

To see how the THINC scheme performs in tracking interfaces with di�erent orientations
against the �ow direction, we conducted the numerical test shown as Figure 4 in [4]. An
initial square shown in Figure 4 (top left) of size 0:125× 0:125 is centred on a 1× 1 compu-
tational domain partitioned by a 64×64 grid. Three velocity �elds used in the advection tests
are, respectively, de�ned as (u; v)= (−1=10;−1); (−1=2;−1); (−1;−1). The advection compu-
tations were carried forward for 160 steps with a CFL number of 0.15. The numerical results
are given in the rest of the panels of Figure 4. The square is accurately transported with all
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Figure 4. Translation of a 2D square initially centered in the computational domain (top-left)
with di�erent velocity �elds: (u; v)= (−1=10;−1) (top-right), (u; v)= (−1=2;−1) (bottom-left) and
(u; v)= (−1;−1) (bottom-right). Plotted are the contours of 0:05; 0:4; 0:6 and 0.95 as in Reference [4].
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Figure 5. Zalesak’s test after one (left) and two (right) revolutions of rotation. Plotted are the
contours of 0:05; 0:5 and 0.95.

velocity �elds. The numerical solutions are free from numerical di�usion and spurious oscil-
lation, and are geometrically faithful. The distortions and the �otsams observed in Reference
[4] are not found here.
The solid rotation test of a notched cylinder of Rudman [13] is computed. The results after

one and two revolutions are shown in Figure 5. Some distortions in the shape of the cylinder
are observed, but the compactness of the interface jump is preserved. Compared to the one-
revolution output, the two-revolution solution is well resolved as well without remarkable
degradation.
A practical interface capturing method for multi-�uid simulations should be tested and veri-

�ed with not only the translational and rotational velocity �eld but also with highly deforming
�uid �ow. We tested THINC scheme with the 2D velocity �eld [13] de�ned as

u=(sin(x) cos(y);− cos(x) sin(y)) (12)

The computational domain [0; �]× [0; �] is equally divided into a 100× 100 mesh. The initial
volume fraction distribution is a circle centred at (�=2; (� + 1)=5) with a radius of �=5. As
in Reference [13], the initial volume fraction is predicted with the velocity �eld (12) for N
steps and then transported back with a reversed velocities for another N steps. As expected,
the �ow �eld de�ned above leads to the stretching and spiraling of the initial shape, which
is then characterized by a thin �lm tail that becomes unresolvable by the �nite resolution of
the �xed mesh when N is large. To compare with the results in Reference [13], we plotted
the results for N =1000 and N =2000 in Figures 6 and 7.
The compact thickness of the interface jump is e�ectively preserved. The distorted spiral

shapes and the reversed circles were reproduced with a reasonable accuracy. From the bird’s
eye view of Figures 6 and 7 for N =1000 and N =2000, it is observed that the THINC
scheme maintains satisfactorily the step-like distributions in the restored solutions even for
a highly deformed interface. The L1 numerical errors de�ned in Reference [13] are given in
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Figure 6. Single-vortex shearing �ow test on a 100 × 100 mesh with N =1000. The velocity �eld
reverses at N =1000, and restores the con�guration back to its initial state after 2000 steps. Displayed
are the contours of 0:05; 0:5 and 0.95 of the numerical results at 1000 steps (left) and 2000 steps

(middle), and a bird’s eye view of the result at 2000 steps.
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Figure 7. Single-vortex shearing �ow test on a 100 × 100 mesh with N =1000. The velocity �eld
reverses at N =2000, and restores the con�guration back to its initial state after 4000 steps. Displayed
are the contours of 0:05; 0:5 and 0.95 of the numerical results at 2000 steps (left) and 4000 steps

(middle), and a bird’s eye view of the result at 4000 steps.

Table I for di�erent numbers of stepping N . Compared with Table 3 in Reference [13], we
�nd that the numerical error is less dependent on the stepping number N in the results of
THINC scheme. For N¿1000, the THINC scheme is obviously superior to the SLIC [6], the
original VOF [3] and the FCT-VOF [13]. Compared to other algebraic type methods based
on high resolution schemes, the THINC method is more e�ective in maintaining the sharp
step-jump in complex �ows.
As seen in (6), THINC scheme is of a �ux-based form. Thus, the VOF function �f is

conserved in a divergence-free velocity �eld. We evaluated the conservativeness of the scheme
by examining the change in the total mass of �f as

Masserror =

∑ �fnij − ∑ �f0ij∑ �f0ij
(13)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1023–1040



ALGEBRAIC INTERFACE CAPTURING SCHEME 1033

Table I. L1 errors for shearing �ow test.

N 250 500 1000 2000

Error 3:21× 10−2 3:53× 10−2 3:84× 10−2 6:81× 10−2
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Figure 8. Relative change of the total mass of the VOF function in the single-vortex shearing �ow test
with N =2000. The relative variation in the total mass of the VOF function, as indicated by the solid
line, is computed by Masserror = (

∑ �fnij − ∑ �f0ij )=
∑ �f0ij , with

∑ �f0ij and
∑ �fnij being the total mass of

the initial VOF function and that of the nth time step, respectively.

where
∑ �f0ij and

∑ �fnij are the total mass of the initial VOF function and that of the nth time
step, respectively.
The mass change de�ned by (13) for the case of N =2000 is shown in Figure 8. The total

mass has been exactly conserved even the interface experienced very heavy distortion in this
numerical test.
Another more stringent test is to capture an interface transported by a velocity �eld de�ned

in a stream function by

�=
1
4�
sin

(
4�

(
x +

1
2

))
cos

(
4�

(
x +

1
2

))
cos(�t=T ) (14)

This velocity �eld is characterized by multi-vortex array and was used by Rider and
Kothe [22] for testing interface tracking methods. As can be seen in Figure 3 of Reference
[22], the initial sphere was largely deformed into several segments which appear topologically
diverse, such as spiral, thin �lm and thin bridge. The thin segments usually appear not to be
resolvable for most Eulerian interface tracking methods.
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Figure 9. Multi-vortex deformational �ow test on a 32 × 32 (top), 64 × 64 (middle) and 128 × 128
(bottom) meshes with T =2. The velocity �eld reverses at t=T=2, and restores the con�guration back
to its initial state at t=T . Displayed are the contours of 0:05; 0:5 and 0.95 of the numerical results

at t=1 (left) and the �nal interfaces at t=2 against the exact solution (right).
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Table II. L1 errors and convergence rates of THINC on the multi-vortex deformation problem.

32× 32 Order 64× 64 Order 128× 128

2:60× 10−2 0.913 1:38× 10−2 0.576 9:26× 10−3

A 2D cylinder as de�ned in Reference [22] was transported over a 1 × 1 square with the
velocity �eld (14). The time required to move the distribution back to its initial state is T =2.
A periodical lateral boundary condition is imposed in this computation. Figure 9 shows the
numerical results on 32×32; 64×64 and 128×128 meshes, respectively. Again, the steepness
of the jump is e�ectively preserved, and the thickness of the transition layer remains compact.
The symmetry of the solution is well retained. The right side panels in Figure 9 show the
�nal interface against the exact solution. The main part of the body has been satisfactorily
restored, even with coarse computational grids.
The L1 errors, same as that used in Reference [22], are given in Table II. Compared

with Table 4 in Reference [22], the THINC shows a capability competitive to other existing
methods in capturing interfaces in complex �ow. The convergence rates for this particular
benchmark test, however, one below one.

4. MULTI-FLUID SIMULATIONS

The THINC scheme has been also validated in realistic simulations of multi-�uid dynamics.
We consider the following governing equations for incompressible multi-�uid �ows in

volume � with its surface denoted by 	:∫
	
u · n dS=0 (15)

@
@t

∫
�
u dV +

∫
	
u(u · n) dS= − 1

�

∫
	
pn dS +

1
�

∫
	
2�D · n dS + 1

�

∫
	
��	(XI)n dS + g (16)

where u=(u; v; w) is the velocity vector, n the outgoing normal, � the density, p the pressure,
� the viscosity, D the velocity strain tensor, � the coe�cient of surface tension, � curvature,
and XI the point on the free interface and g the gravity force.
We have recently developed a numerical solver for �uid dynamics, namely VSIAM3

[23, 24]. The VSIAM3 is a �nite volume method that makes simultaneously use of the vol-
ume integrated average and the surface integrated average as the dependent variables. The
VSIAM3 is devised for general �uid dynamics, and is found to be robust and accurate for
multi-phase �uid simulations from our previous applications.
We incorporated the THINC to the VSIAM3 code. The air/water interface is identi�ed by

the 0.5 contour of the VOF function f(x; y; z; t), which is governed by (1) and computed
by the THINC scheme. The density and viscosity coe�cient over the whole computational
domain are de�ned by

p(x; y; z; t)= �f(x; y; z; t)�l + [1− �f(x; y; z; t)]�a (17)
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Figure 10. The displacement of the water front. Same as Reference [25], the normalized dis-
tance is de�ned by Z = z=a with z being the real distance of the surge front and a the width
of the initial water column. The time is normalized as T =

√
2g=at, where t is the real time and

g the gravitational acceleration.

and

�(x; y; z; t)= �f(x; y; x; t)�l + [1− �f(x; y; z; t)]�a (18)

where the subscripts ‘a’ and ‘l’ denote air and liquid, respectively. The surface tension is
computed with the continuum surface force formulation in Reference [25]. In the calculation
of curvature, a level set function is created with the 0.5 contour of �f being the interface.
In the real hydrodynamic simulations reported in this paper, the gravitational acceler-

ation is g=9:8m=s2. The densities for air and liquid are speci�ed as �a = 1:1763 kg=m
3

and �l = 996:62 kg=m
3, respectively. The viscosity coe�cients are �a = 18:62× 10−6 Pa s and

�l = 854:4× 10−6 Pa s.
In order to validate the THINC scheme presented in this paper, we computed the dam-

breaking problem, which was experimentally studied by Martin and Moyce [26] and then
widely used as a benchmark test for numerical models. Our computational domain is a
36 in×36 in 2D square. The initial rectangular water column has a width of a=214 inches and
a height of 2a. A mesh of 40× 40 with uniform spacing is used. We validated the computa-
tional model by examining the displacement of the water front along the lower surface. The
scaled displacement is plotted in Figure 10. The experimental data is obtained from Table II
in Reference [26]. The computational result of the THINC scheme agrees well with the exper-
iment. In order to examine the numerical smearing across the moving interface, we conducted
another run with a 75×80 grid and plotted the 0:05; 0:5 and 0.95 contours of �f in Figure 11.
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T=0.00 T=2.52

T=5.03 T=8.81

T=9.44 T=10.20

Figure 11. The VOF function of the density current generated by the release of a rectangular water
dam. Displayed are the contours of 0:05; 0:5 and 0.95.
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Figure 12. The snapshots of the rising bubble at di�erent instants. Time increases from left to right.
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Figure 13. The rising speed of the bubble plotted against the experiment results in Reference [27].

As expected, the THINC method e�ectively prevents the smearing of the interface and the
thickness of the transition layer of the interface was kept compact even after the interface has
been heavily deformed with signi�cant topological changes. The air bubbles trapped in the
water after T =8:81 has been reproduced with a well-de�ned interface.
The dynamics of a single bubble rising in a viscous liquid was simulated to verify the

whole computational model. A systematic study on the behaviors of single bubble rising in
a viscous �uid is found in Reference [27]. The experiment observations of several steady
bubbles provide a good test bed for numerical models. Guey�er et al. [28] and Sussman
and Smereka [29] conducted axisymmetric simulations with �ne grids. In the present study,
we have carried out a 3D simulation for bubble A in Reference [27] with a relatively low
resolution in a Cartesian mesh (452 × 160). As shown in Figure 12, after the deformation
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from an initial spherical bubble in the early stage, the bubble reaches a stable shape and rises
at a constant speed under the balance of surface tension force, inertial force and the viscous
force. Figure 13 displays the bulk speed of the rising bubble. It is found that the THINC
scheme gives an excellent agreement with the experimental result.

5. CONCLUSIONS

A simple and practical numerical method for capturing free boundary is devised using the
hyperbolic tangent function. The resulting method, THINC, conserves the mass of transported
quantity, and e�ectively eliminates the numerical di�usion and spurious oscillation from the
moving interface. Our numerical tests show that the present method gives satisfactory re-
sults for even heavily deforming velocity �eld. Without geometrical surface reconstruction,
the THINC scheme appears very computationally e�cient and the implementation in 3D is
straightforward. Numerical tests of both pure advection and multi-�uid computation reveal
that the THINC method is promising and applicable to a wider spectrum of interfacial �ows
in real applications.
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